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AbItrac:t-This paper is concerned with the finite deformation of partially set plain woven fabrics subjected
to biaxial stresses applied in the directions of the yarns. The configurations of the yarns in the stress-free
state are assumed to consist of combinations of elasticas resulting from finitely deformed cantilevers under
end loads. In our analysis, the yarns are treated as elastic curved rods subjected to combined exteDsion and
bending. As a result of fiber slippage, the moment-curvature relation of the yarn is regarded as biliIiear with
ideal Baushinger's effect. Residual stresses are found to exist in the fiber initially. A nonlinear boundary
value problem can be formulated for the deformation of the fabric where the interyarn contact force is
determined from the compatibility condition of displacements at the crimp for yarns in the warp and the
weft directions. The effect of the contact deformation of yarns is included in this analysis. Numerical
solutions are found for the problem of a uniaxial extension of the fabric and the problem of a biaxial
extension of the fabric with equal stresses.

INTRODUCTION
The plain woven fabric normally consists of interlaced bent yarns in two mutually per
pendicular directions. Prior to weaving, the configuration of the yarn is straight. With weaving,
residual stresses are introduced to the yarn. The fabric with unrelaxed residual stresses is
referred to as a grey fabric. Residual stresses in a fabric can be eliminated through a stress
relaxation treatment by means of a moistifying and drying process. When the residual stresses
are entirely relaxed, the fabric is called a completely set fabric. In reality, there is always a
certain amount of residual stress remaining in the fabric. The fabric with partially relaxed
stresses is called a partially set fabric. The tensile property of the fabric can be affected by the
presence of the residual stresses. .

The initial extensional moduli of grey and completely relaxed fabrics have been investigated
by Grosberg and Kedia based on an energy method associated with small deformation[l]. In
their analysis, the yarns are considered as inextensible. They concluded that the fabric with
residual stresses would have a higher initial extensional modulus. The problem of the finite
biaxial extension of completely set woven fabrics has been studied by Huang[2]. In his
formulation, the yarns are treated as extensible curved rods with bilinear moment-curvature
relation resulting from fiber slippage during flexural deformation of the yarn.

In this paper, we shall generalize the method presented in [2] to the case of partially set
plain weaves. Since there is an initial deformation caused by residual stresses, an unloading
process can occur in the yarn under the action of external forces. We shall consider that the
yarn material has an ideal Baushinger's effect in bending during the unloading process. A nonlinear
boundary value problem can be formulated for the initial and the final deformed states of the
fabric. Solutions will be obtained by an iterative procedure.

GEOMETRY OF THE YARN

Let us consider a piece of partially set plain woven fabric consisting of interlaced yarns in
two mutually perpendicular directions referred to as the warp and the weft directions. The
fabric is subjected to biaxial forces in the warp and the weft directions. The problem of a
uniaxial extension will be regarded as a special case when the biaxial forces in one direction
vanish. In general, the deformation of the fabric can be described by the following three states:
(i) the stress-free state, (ti) the initial state prior to the application of external forces and (iii) the
final deformed state due to the action of external forces. Note that ther are residual stresses in
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Fig. I. Geometry of the problem.

the yarn in the initial state. In order to obtain yams in the stress-free state, it is necessary to
separate the yarns from the fabric. The yarns in the warp and the weft directions in the
stress-free state would overlap with each other as shown in Fig. I(a). The center line of the yarn
is in the shape of a wave with the wave length 2p and the amplitude h. We shall call 2p and h as
the thread spacing and the crimp height respectively. The arc length of the center line for half
of the wave is called the yarn length and is denoted by I. There are points of inflection on the
center line of the yarn. The configuration of the yarn is always antisymmetrical with respect to
the point of inflection. Note that all points of inflection of yarns in the warp direction lie in a
plane PI and all points of inflection of yarns in the weft direction lie in another plane P2• These
planes are parallel to each other. The height of the PI-plane as measured from the P2-plane is
denoted by H. Let us consider a segment of the center line of the yarn in the stress-free state as
shown in Fig. l(b). If we set the origin at the point of inflection, the coordinates of the crimp
point would-be (P/2, h/2). The depth of the yarn is denoted by 2R. The center line of the yarn is
assumed at the half depth. In the following, we shall consider the yarn in the plane of Fig. I(a)
as the one in the warp direction and the yarn perpendicular to the plane of Fig. I(a) as the one
in the weft direction. We shall use subscripts I and 2 to indicate quantities referred to the yarns
in the warp and the weft directions. The vertical distance at the crimp between the bottom of
the yarn in the warp direction and the top of the yarn in the weft direction is

(1)

We may consider U as a measure of the degree of stress relaxation. Larger value of U
corresponds to the case of a lesser degree of stress relaxation. For a completely set fabric, the
stress-free state and the initial state are identical. Hence U = 0 and

(2)

In the following, we shall follow Peirce [3] and assume that the geometry of the center line
of the yarn between the point of inflection and the crimp in the stress-free state as shown in
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Fig. 1(b) is identical to that of an elastica corresponding to a finitely deformed cantilever under
an end force. Let us denote the angle of inclination of the tangent at the origin by a and put

(3)

and

The crimp height and the thread spacing are respectively

h = 1[1-2 E(k)-E(P, k)]
K(k) - F(p, k)

and

p = 2kl cos p/[K(k) - F(p, k)],

(4)

(5)

(6)

where K(k) and F(p, k) are the complete and the incomplete elliptic integrals of the first kind;
E(k) and E(p, k) are the complete and the incomplete elliptic integrals of the second kind. Let
00 be the angles of inclination of the tangent at any point on the center line. We have

cos 00 = 2k sin cP(l- k2 sin2 cP )1/2,

where cP is a parameter related to the abscissa Xo by

(7)

(8)

Let So be the arc length measured along the center line. The curvature of the center line in the
the stress-free state is

dO 23/2

ds: = - -, [K(k) - F(p, k)](sin a - 2k2 sin2 cP + 1)1/2. (9)

STRESS ANALYSIS

The yarn is deformed by the residual stresses in the initial state. Further deformation is
introduced due to the application of forces Fx and Fz to the yarns in the warp and the weft
directions respectively. Since the deformation is antisymmetrical with respect to the point of
inflection, the PI and Prplanes must remain stationary during deformation. Again, we shall set
the origin at the point of inflection in the deformed yarn. A contact force V and a bending
moment M1 are introduced at the crimp as shown in Fig. l(c)~ Let the angle of inclination of the
tangent at any point be O. The axial tension and the bending moment at any point are

T = Fx cos 0+V sin 0

and

M=FxY- Vx

respectively.
Let AE be the extensional stiffness of the yarn. The axial strain is

€ = A~ (Fx cos 6+ V sin 6).

(10)

(tl)

(12)
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Denote the arc length of the center line of the deformed yarn by s. We have

ds
-= I+E.
dso

The change in curvature is

dO dOoK=---
ds dso'

By eqns (13) and (14), we have

~=~(dOo+K)
dxo cos 00 dso '

where dOo/dso is given by eqn (9) and

(13)

(14)

(15)

c~: :0 = [ 1+ A~ (Fx cos 0 + V sin 0) ]/[2k sin I{>(I- k2 sin21{»112]. (16)

As a result of the deformation in the initial state, unloading in bending moment can be
introduced in the yarn during the application of external forces. We shall consider that the
M - K relation is bilinear. Let Mo be the magnitude of bending moment when fiber slippage
begins to take place. The bending stiffness varies from EI to E*I (E* < E) due to fiber
slippage. We shall also assume that the material of the yarn possesses an ideal Baushinger's
effect during the unloading process as shown in Fig. 2. It is easy to realize intuitively that if
there is any reversal in curvature, it will initiate at the instance of the application of external
forces. Thus if the external forces are applied incrementally, the reversal in curvature can occur
only at the first increment of external force. Let Ma and Ka be respectively the bending moment
and the change in curvature caused by the residual stresses at the initial state. The M - K

relation can be expressed mathematically by the following equations:

M for IMI~IMal and IMI:5Mo;
EI

Mo+M-Mo for IMI > IMaI, IMI > Mo and M>O;
EI E*I

_Mo+M+Mo for IMI> IMaI, IMI > Mo and M<O;
EI E*I

(17)K=

M-Ma for IM/:5IMal and IMa- MI :5 2Mo;
Ka+ EI

2Mo+M -Ma+2Mo for IMI < IMaI, IMa- MI > 2Mo and Ma>O;
Ka- EI E*I

+2Mo+M -Ma-2Mo for IMI < IMaI, IMa- MI > 2Mo and Ma<O.
K
a EI E*I

By eqns (15)-(17) and (11), we can express dO/dx as a function of 0, x and y. Since

dx-=cosO
ds '

dy = sin 0
ds '

(18)
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Fig. 2. M - K relation for a material with ideal Baushinger's effect.

dx =..!...±.!.. cos 9
dxo cos 90

~ = ..!..±!.. sin 9.
dxo cos 90
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(19)

(20)

Thus, if we treat Xo as an independent variable and 9, x and y as dependent variables, eqns (15),
(19) and (20) present a nonlinear boundary value problem. The boundary conditions are

x(O) = y(O) = 9(P/2) =O. (21)

In order to solve this problem, we must find the interyarn pressure V. The upward
displacement of the center line at the crimp is

d = y(P/2) - h/2

_ _![ _ E(k)-E(P,k)]
-y(P/2) 2 1 2 K (k)-F(P,k)' (22)

The change in yarn depth 2R' - 2R is caused by (i) Poisson's effect and (ii) the contact
deformation. The average normal strain across the depth of the yarn due to the contact
deformation is assumed to be proportional to the contact force V. Hence

R'-R
-R-= -[uE(P/2)+AV], (23)

where U is Poisson's ratio and Ais a constant. The upward vertical displacement at the point of
contact of the yarns as shown in Fig. l(d) is

q = d -(R'-R)

= d +R[UE(P/2) +AV]. (24)

The compatibility condition for the displacement at the point of contact for yarns in the warp
and the weft directions requires that

(25)
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which leads to
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(26)

Equation (26) provides an additional condition for the determination of V.
Let us introduce the following dimensionless quantities:

io = 2xo/l, Yo = 2yo/l, So = 250/1, i = 2x/l, y = 2y/l, a= 2d/l,

R = 2R/I, K = IK/2,Ka = IKa/2, n = 1/(2r), v =V/(AE), mo = Mol/(2El),

m = MI/(2El), ma = Mal/(2EI), v = E/E*, A= AAE, (27)

where r is the radius· of gyration of the cross section with respect to the neutral axis. A
subscript 1 or 2 can be added to denote the quantities for the yarn in the warp or the weft
direction. Let us also introduce the following dimensionless quantities:

Our governing equations can be expressed in terms of the dimensionless quantities as

cP = cos-1g: [K(k) - F(p, k)]},

dd~o = - 21
/
2 [K(k) - F(p, k)](sin a - 2k2 sin2cP + 1)1/2,

So

m = n2(1x9 - vi),

(29)

(30)

(31)

m for Iml~lmal and Imlsmo,

mo+ v(m -mo) for Iml>lmal,lml>mo and m>O,

- mo+ v(m + mo) for Iml> Imal, Iml > mo and m<O,
K=

Ka+m -ma for Imlslmal and Ima- ml s 2mo, (32)

Ka-2mo+v(m-ma+2mo) for Iml < ImaI, Ima- ml > 2mo and ma>O,

Ka+ 2mo + v(m - ma- 2mo) for Iml < ImaI, Ima- ml > 2mo and ma<0,

1+8
E

= (1 + Ix cos 8 + v sin 8)/[2k sin cP (1- k2sin2cP )1/2],
cos 0

d8 1+ E (d80 _)
dio = cos 80 dso+ K ,

di 1+E
-d- =--8 cos 8,

Xo cos 0

dy 1+ E •
-d- =--8 sm8,

Xo cos 0

i(O) = y(O) = 8(P/1) = 0,

-__ E(k)-E(P,k)
d - y(P/l) -1 +2 K(k) - F(p, k)'

Vl-/J.V2=0,

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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After XI and X2 are determined, the extensional strains in the warp and the weft directions as
measured from the stress-free state are

_ xl(Pdld
(41)E -

x - pdll

and

_ X2(P2!l2)
1 (42)E =

z P2/h

respectively. Let us set the extensional strains in the initial state to be Ex = EX() and Ez = Ezo. The
observed extensional strains are measured from the initial state. They are

- Ex - EXo (43)E =
x 1+EX()

and

_ Ez -E",
(44)

Ez - 1+Ezo .

NUMERICAL RESULTS

Our solutions of eqns (33)-(37) and (40) are based on a trial and error method. We first try a
value for v and solve for 8, X and y. It is found that if 8(0) is known, then 8, X and y can be
solved numerically by the Runge-Kutta method. Here, we shall try a value for 8(0) and find
8(p/l). The correct value of 8(0) must make 8(p/l) = O. Again 8(0) can be found by a
trial-and-error method. In our computation, we employed a modified Newton's method to find v
and 8(0). We choose the values of Ix and Iz to increase from zero with constant increments.
Hence the initial tried values of v and 8(0) can be estimated from their values in the previous
steps by Lagrange's extrapolation formula.

-- Ex

----- -Ez0.4

0,1

03

0,2

O,"",,-~_'---~_'---~----J'---'----'_-'----'° 0,04 0,08 0,12 0,16 0,20
f x

Fig. 3. E. and -E, curves for a,=0.8, a2=0.1, 111=112=4, UI=U2=0.4, R,=R2=0.5, .\'=.\2=0.3,
fJ = I, p. = I, P = 10, mo = 0.05, f, = 0 and various values of u.
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Computations are carried out for a plain woven fabric with al =0.8, a2 =0.7, nl =n2 =4,
0"1 = 0"2 =0.4, R1 =R2 =0.5, AI =A2 =0.3, fJ = 1, JL = 1, v = 10 and mo =0.05. Two types of
problems are considered here. In the first problem, the fabric is subject to a uniaxial extension
in the x-direction. In this case, Iz = O. In Fig. 3, Ex is plotted vs Ix in solid lines for various
values of u. When Ix is small, the elongation of the fabric is governed by both the extension and
the bending of the yarn in the x-direction. When Ix is sufficiently large, the elongation is
dominated by the extension of the yarn and the Ex vs Ix curve would approach a straight line
asymptotically. Note that u = 0 corresponds to the case of completely set fabric. It is seen from
Fig. 3 that if the yarn geometry in the stress-free state remains identical, then the partially set
fabric would in general have a larger extensional strain than the completely set fabric. Although
it cannot be seen from Fig. 3, the partially set fabric has a slightly larger initial extensional
modulus in comparison with the completely set fabric with the same geometry in the stress-free
state. The strain in the transverse direction Ez is negative. In Fig. 3, we plotted - Ez VS Ix in
dotted lines. When Ix approaches infinity, the yarns in the warp direction extends without any
alteration of the yarn geometry in the weft direction. Hence all - Ez curves approach asymp
totically the horizontal lines.

In the second problem, the fabric is subjected to biaxial stresses of equal magnitude. Since
£rl ~ £r2, the extensional properties in the x and z directions are different. Consequently, the Ex

vs Ix curve and the Ez vs Iz curve are also different. In this case, it is also found that the initial
residual stresses can cause additional strain if the yarn geometries in the stress-free state
remain identical.

CONCLUSIONS

(1) This study present a methodology for analyzing the problem of the finite biaxial
extension of plain woven fabric. In order to make the problem realistic, the effect of initial
stresses due to partial setting .of yarns, loss in bending stiffness associated with fiber slippage in
the yarn and the contact deformation of the yarns at the crimp are all included in the analysis.

(2) When the stress level is low, the extension of the fabric is governed by both the
extension and the bending of yarns. When the stress level is high, the extension of the fabric is
dominated by the extension of the yarn in the direction of the applied force.

(3) An additional tensile strain can be induced by the appearance of residual stresses in the
yarn. The initial extensional modulus nevertheless remains practically constant.

0.2

o
0.1

u = 0.2

---Ex

----- Ez04

0.3

0.1

0.2

OOL-_'___~_'___~_'___~_'___~__'_~

o 0.04 0.08' 0.12 0.16 0.20
f x = f I

Fig. 4. Ex and E: curves for a. = 0.8, az = 0.7, nl = nz = 4,0'1 = O'z = 0.4, R. = Rz = 0.5, AI = Az = 0.3, fJ = \,
IL = 1. v = \0, mo = 0.05, Ix = I: and various values of u.
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(4) In the case of uniaxial extension of a fabric, contraction of the fabric in the transverse
direction can be introduced through a variation in crimp height.

(5) In the case of biaxial extension of a fabric, different geometries of the yarns in the warp
and the weft directions can cause a difference in the extensional properties in these directions.
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